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An analytical method is presented for the #exural vibration of rectangular thin plates with
free boundary conditions. Based on the apparent elasticity method, the #exural vibration of
a rectangular thin plate is reduced to two one-dimensional #exural vibrations of slender
rods. Then the two-dimensional #exural vibration of a rectangular thin plate with free
boundary conditions is considered as the coupling of these two equivalent #exural
vibrations with di!erent equivalent elastic constants. It should be noted that these two
equivalent #exural vibrations are di!erent from the traditional one-dimensional #exural
vibrations of slender rods. They are coupled to each other by the introduced mechanical
coupling coe$cient. The analytical solutions for the isotropic rectangular thin plate in
#exural vibration are derived and the resonance frequency equation is obtained. The natural
vibrational mode is analyzed and the frequency spectra are calculated. It is found that the
normal modes and the natural frequencies of the rectangular thin plate in #exural vibration
are abundant. Theoretical analyses show that one-dimensional #exural vibration of
a slender rod based on the classical elementary #exural theory, as well as the stripe mode
vibration of a rectangular thin plate is a limiting vibrational mode of rectangular thin plates.
Experiments show that the measured resonance frequencies are in good agreeement with the
calculated results, and the displacement nodal line pattern is also observed experimentally.
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1. INTRODUCTION

Plates are elements of practical importance in many engineering applications. The natural
modes and frequencies of #exural vibration of rectangular thin plates have been of interest
to structural engineers. In recent years, circular and rectangular thin plates have been used
as ultrasonic radiators in ultrasonic ranging, ultrasonic levitation, and ultrasonic drying.
The reason is that the radiators of thin plates in #exural vibration can improve the acoustic
impedance matching between the piezoelectric transducers and the air medium. Classical
analytical methods have been used to deal with the #exural vibration of thin plates with
di!erent edge conditions [1}4]. However, for rectangular plates with free boundary
conditions, there is no exact analytical solution to the governing di!erential equation of
motion. Therefore, the natural frequencies cannot be found analytically. A number of
approximate analytical methods have been developed for the vibration analyses of plates
[5, 6], but are limited to plates of speci"c boundary conditions. Numerical methods are the
most powerful tools in dealing with complicated plate problems [7}9], but a large system of
algebraic equations and data need to be processed.

In this paper, the apparent elasticity method previously developed for the coupled
vibration problem of short columns and other vibrating systems [10}12] is extended to the
0022-460X/01/051063#09 $35.00/0 ( 2001 Academic Press



1064 L. SHUYU
free vibration of rectangular thin plates with free edge conditions. In this method, the
concept of the equivalent elastic constants is introduced. The vibration of plates is reduced
to the coupling of two #exural vibrations of slender rods with rectangular cross-section.
These two #exural vibrations of rods have di!erent equivalent elastic constants and they are
coupled to each other by the introduced mechanical coupling coe$cient. Using the
solutions to #exural vibrations of slender rods with free edge conditions, the natural
frequency equation is derived. The resonant frequencies of rectangular thin plates with free
boundary conditions are computed and compared with the measured results.

2. FREE VIBRATION OF A RECTANGULAR THIN PLATE WITH FREE
BOUNDARY CONDITIONS

In this paper, the free vibration of a rectangular isotropic thin plate with free edge
conditions is considered. The length, width and thickness of the plate are ¸,=, and ¹. Their
directions are consistent with those of the co-ordinate axes of X, >, and Z, respectively, as
shown in Figure 1.

2.1. FREQUENCY EQUATION OF RECTANGULAR THIN PLATES WITH FREE BOUNDARY

CONDITIONS IN FLEXURAL VIBRATION

According to the classical thin plate theory, the shear strain and torsion are ignored, the
relation between axial strains and stresses in the plate can be expressed as
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which is known as the mechanical coupling coe$cient, from equations (1) and (2), we have
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, which are de"ned as the equivalent elastic constants.

According to the #exural theory of thin plates, the axial stresses p
x

and p
y
make the plate

bend around the>- and X-axis respectively. Therefore, the vibration of the rectangular thin
Figure 1. A geometrical diagram of a rectangular thin plate in #exural vibration.
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plate can be approximately regarded as a coupling of two equivalent #exural vibrations of
slender rods with the same rectangular cross-section. One is the #exural vibration of
a slender rod of length ¸ with equivalent elastic constant E

x
; the other is that of a slender

rod of length = with equivalent elastic constant E
y
. These two equivalent #exural

vibrations of slender rods are coupled to each other by the mechanical coupling coe$cient.
According to the classical #exural theory of slender rods [4], the frequency equations of
rectangular thin plates with free edge conditions can be derived from the classical theory of
slender rods,
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in slender rods, R
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are the gyration radii of slender rods with rectangular
cross-section. From equations (5) and (6) we have
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where P (i) and Q( j) are roots of equations (5) and (6); P (0)"Q(0)"0. When i and j are not
equal to zero and are large, P (i)"n (2i#1)/4, Q( j)"n (2j#1)/4. Every combination of
i and j corresponds to one kind of #exural vibrational mode of rectangular thin plates. For
#exural vibration of rectangular thin plates, i and j cannot be zero at the same time.
Otherwise, there will be no #exure. From equations (3), (4) and (7), (8) using the expressions
of <

x
, <

y
and C
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, C

y
, after some transformations, the equivalent natural frequency and the

mechanical coupling coe$cient can be obtained according to the following equations,
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where A"u2/(16C2), u"2nf, C2"E/o, C is the velocity of sound of longitudinal
vibration in slender rods. It can be seen from equations (9) and (10) that when the material,
the dimensions and the vibration mode (i and j) are determined, the coupling coe$cient and
two equivalent natural frequencies can be obtained analytically. From equation (10), these
two roots can be derived as

A
1
"

R2
x
P4 (i)

(1!l2)¸4
, A

2
"

R2
y
Q4( j)

(1!l2)=4
. (11)

From equation (11), two equivalent natural frequencies can be obtained:

f
1
"

2CR
x
P2 (i)

n¸2J1!l2
, f

2
"

2CR
y
Q2 ( j)

n=2J1!l2
. (12)

It should be noted that these two frequencies have no practical meaning. However, the
actual resonance frequencies of rectangular thin plates in #exural vibration can be
determined by these two equivalent natural frequencies. Therefore, equation (10) is the
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equivalent natural frequency equation of rectangular thin plates with free boundary
conditions. The analysis for the actual resonance frequencies of the rectangular thin plate
will be explained in the following sections.

2.2. ANALYSIS OF TWO LIMITING FLEXURAL VIBRATIONAL MODES OF RECTANGULAR

THIN PLATES

From the above analyses, two limiting vibrational modes can be obtained, which are the
#exural vibrations of classical slender rods with free boundary conditions.

2.2.1. ¸/WP0

In this case, the plate becomes a slender rod whose length= is much larger than its width
¸. From equations (3), (4) and (9), we have

n"0, E
x
"0, E

y
"E. (13)

The natural frequency of the slender rod of length = can be obtained from equation (8),

f"2CR
y
Q2 ( j )/n=2. (14)

This is the resonance frequency of slender rods with free boundary conditions according to
the classical slender rod #exural theory. Therefore, the #exural vibration of a classical
slender rod is one kind of limiting vibrational modes of the rectangular thin plate when its
dimensions satisfy certain conditions.

2.2.2. ¸/WPR

In this case, the rectangular thin plate becomes a slender rod of length ¸ and width=.
Using similar procedures, we have

n"R, E
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"E, E

y
"0 (15)
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This vibrational mode is the same as the vibration of a slender rod of length ¸ according to
the classical #exural theory of slender rods.

From the above analyses, it can be seen that the #exural vibrations of rectangular thin
plates become the vibrations of slender rods when the dimensions satisfy certain conditions.

2.3. ANALYSIS OF NATURAL FREQUENCIES OF RECTANGULAR THIN PLATES IN FLEXURAL

VIBRATION

It can be seen from equation (10) that two equivalent frequencies can be obtained which
represent the two natural frequencies of the equivalent #exural vibrations of slender rods in
the directions of the X and > co-ordinate axes. Since the #exural vibration of a rectangular
thin plate is a coupled one of these two equivalent #exural vibrations, and these two
equivalent one-dimensional #exural vibrations are perpendicular to each other, the
resonance frequency of a rectangular thin plate in #exural vibration should be expressed as
the sum of two vectors in frequency domain that correspond to the two equivalent #exural
vibrations. Let the two equivalent natural frequencies be f

ix
and f

jy
, then the natural
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frequencies of rectangular thin plates in #exural vibration mode of order i and j can be
expressed as

f
ij
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)1@2 , (17)

where f
ij

is the natural frequency of a rectangular thin plate in #exural vibration with free
boundary conditions. In this case, there are i#1 and j#1 nodal lines parallel to the> and
X co-ordinate axes. According to the above analyses, three di!erent vibrational modes of
rectangular thin plates can be discussed as follows.

2.3.1. iO0, j"0

For this vibrational mode, the plate in #exural vibration has only nodal lines parallel to
the >-axis. From equations (7) and (8), we have P(i)O0, Q( j )"0. Using equations (3), (4)
and (9), it can be obtained that n"1/l, E

x
"E/(1!l2 ) and E

y
"R. From equation (7) or

(10), the natural frequency of the plate is expressed as
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Equation (18) is also the same as that of equation (12). Let C
D
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N"i#1, where N is the number of nodal lines parallel to the>-axis. Equation (18) can be
rewritten as
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It can be seen that this is the natural frequency of rectangular thin plates in stripe mode in
the literature [13], where the stripe vibrational mode of rectangular thin plates was studied.
Therefore, it is obvious that the stripe vibrational mode is one of the vibrational modes of
rectangular thin plates in #exural vibration. For this kind of vibrational mode of plates,
there is only #exure around the >-axis, while in the > direction, there is no #exure around
the X-axis. The reason is that E

y
"R and the plate is rigid in the direction of the >-axis.

2.3.2. i"0, jO0

Using similar procedures, we have P (i)"0, Q ( j)O0, n"l, E
x
"R, E

y
"E/(1!l2).

The natural frequency is
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where N"j#1. In this case, the plate has only #exure around the X-axis, and no #exure
around the >-axis. The reason is that E

x
"R and the rectangular plate is rigid in the

direction of the X-axis. For this vibrational mode of plates, there are only nodal lines
parallel to the X-axis, no nodal lines parallel to the >-axis exist. This is the stripe mode of
rectangular plates in the direction of the >-axis, and it is similar to the stripe mode in the
direction of the X-axis discussed in the above section.

2.3.3. iO0, jO0

It is obvious that for this kind of vibrational mode, the rectangular thin plate has not only
nodal lines parallel to the >-axis but also nodal lines parallel to the X-axis, i.e., there are
perpendicular nodal lines on the surface of the plate. The natural frequency of this vibration
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mode can be obtained from equation (17). Because i and j are arbitrary positive integers,
there are many natural frequencies for the #exural vibration of the rectangular plate.

3. FLEXURAL DISPLACEMENT DISTRIBUTION OF RECTANGULAR THIN PLATES

According to the above analyses, the #exural vibration of a rectangular thin plate in
#exural vibration with free boundary conditions can be regarded as the coupling vibration
of two equivalent #exural vibrations of slender rods with the same rectangular cross section.
Therefore, the #exural displacement of the rectangular plate can be expressed as the product
of two displacement distribution functions of slender rods whose lengths are ¸ and =,
respectively,
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"2Q( j)y/=. It should be noted that equation

(21) appears to have separable solutions. Actually, the solutions are not separable, they are
coupled to each other by the coupling coe$cient. When the edges of the plate are free,
equations (22) and (23) can be rewritten as
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In equations (24) and (25)
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are constants. For di!erent vibrational modes, we can obtain the displacement

distribution of #exural vibration of rectangular thin plates with free boundary conditions.
For example, when iO0, j"0, we can get the displacement distribution of the plate,
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as u"2P(i)x/¸, g
i0

(x, y) depends only on x. Therefore, there are only nodal lines parallel to
the >-axis, and this is just the stripe mode in the direction of the X-axis.

4. EXPERIMENTS

4.1. MEASUREMENT OF RESONANT FREQUENCIES OF RECTANGULAR THIN PLATES IN

FLEXURAL VIBRATIONS

According to the resonance frequency equation (10), some rectangular thin plates are
designed and machined. The material is stainless steel. The standard material parameters
are as follows: l"0)28, E"19)5]1010 N/m2, o"7)80]103 kg/m3. The resonance
frequencies of the plates are measured using the emitting}receiving method as shown in



Figure 2. Experimental set-up for the resonance frequency measurement of rectangular thin plates in #exural
vibration 1, frequency meter; 2, signal generator; 3, oscilloscope.

TABLE 1

Measured and calculated resonance frequencies of rectangular thin plates in -exural vibration
with free boundary conditions

Mode (i, j ) ¸ (mm) = (mm) ¹ (mm) f (Hz) f
m

(Hz) D (%)

(10, 0) 200 80 3 19 528 19 117 2)15
(0, 4) 200 80 3 22 418 21 789 2)89
(9, 3) 200 80 3 20 963 20 257 3)49
(13, 0) 250 100 3 20 660 19 972 3)44
(0, 5) 250 100 3 21 433 20 876 2)67
(11, 4) 250 100 3 20 751 20 113 3)17
(15, 0) 240 120 2 19 702 19 218 2)52
(0, 8) 240 120 2 23 699 22 892 3)53
(13, 6) 240 120 2 20 382 19 616 3)90
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Figure 2. In the experiments, the plate FP is excited to vibrate #exurally by an emitting
transducer E¹ at one end of the plate. At the other end, the plate is supported using
a supporter. Some sponge is put between the plate and supporter to satisfy the free
boundary condition. The exciting transducer also acts as a supporter. The receiving
transducer R¹ is put on the upper surface of the plate at the opposite end of the actuator.
To reduce the e!ect of the receiving transducer on the measured #exural resonance
frequencies of the plate, the receiving transducer must be small. The resonance frequencies
of the emitting and receiving transducers must be much higher than those of the rectangular
plate to be measured. The measuring principle is described as follows. Change the frequency
of the input signal of the generator that is connected to the emitting transducer until the
output of the receiving transducer that is connected to the oscilloscope has a maximum. The
frequency corresponding to this maximum output is the resonance frequency of the plate in
#exural vibration. The measured resonance frequencies of the plates are shown in Table 1,
where f and f

m
are the calculated and measured resonance frequencies, D"D f!f

m
D/f

m
. For

the frequency measurement error, the following factors should be taken into account. First,
the free boundary condition is not satis"ed completely in the experiment. Second, the
standard material parameters are di!erent from the practical values of the plate material.
Third, for the plate to be measured the emitting and receiving transducers are external
loads, this will cause error.

4.2. OBSERVATION OF THE FLEXURAL DISPLACEMENT DISTRIBUTION OF RECTANGULAR

THIN PLATES

Some "ne powders are put on the radiating surface of the rectangular thin plate to
measure the displacement distribution. When the plate is excited using a longitudinal
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transducer that is attached to the center of the plate, it will vibrate. If the frequency of the
exciting transducer is equal to the natural frequency of the plate, the plate will resonate and
its vibration is intense. Therefore, the powders will concentrate at the #exural displacement
node. The powder distribution pattern is the distribution of nodal lines of the plate. In the
experiment, the exciting transducer is a sandwich longitudinal vibrator whose resonance
frequency is close to that of the rectangular thin plate in a certain #exural vibrational mode.
It is illustrated that when the plate vibrates, the powders on the surface form di!erent
distribution patterns according to the exciting frequency and the vibrational mode. The
stripe mode and the other vibrational modes, which have both the parallel and
perpendicular nodal lines on the surface, have been observed. The observed displacement
distribution is consistent with the theoretically predicted results.

5. SUMMARY AND CONCLUSIONS

An analytical method is presented for predicting the natural frequency of #exural
vibration of rectangular thin plates with free boundary conditions. The natural frequency
equation is derived which can be used to calculate the natural frequencies when the material
parameters and the dimensions are given. At the same time, the analytical expression of
normal functions of #exural displacement distribution is also obtained. To sum up the
above analyses, the following conclusions can be drawn:

(1) Compared with numerical methods, the analytical method presented in this paper is
simple; no computer simulation is required. On the other hand, the physical meaning
is concise.

(2) As i and j are arbitrary positive integers, there are many vibrational modes for the
#exural vibration of rectangular thin plates; therefore, the natural frequencies are very
abundant.

(3) As the rectangular thin plate has a large radiating surface, it is predicted that it will
"nd wide applications in ultrasonic ranging, ultrasonic levitation, and ultrasonic
drying.

(4) In this paper it is assumed that the shear deformation and the rotary inertia could be
ignored. The plate must be thin, its length and width must be much larger than its
thickness. On the other hand, for higher frequencies of the thin plates, the shear
deformation could not be ignored, so the theory in this paper is suitable for thin plates
and vibrational orders of low natural frequency. In other cases, the di!erence between
the theoretically predicted frequencies and the measured results could not be ignored.
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